Contents

Editorial Board of Dental Follicle – The E Journal of Dentistry ... 30
Scientific Editorial - 3D Printing In Orthodontics .. 31
References : ... 32
Common Impression Problems: Identification and Correction ... 33
Inadequate Marginal Detail ... 33
Internal bubbles .. 34
Marginal Tears ... 35
Drags and Pulls ... 35
Tray Selection ... 36
Separation From the Tray ... 37
Tray Distortion ... 38
Inadequate Syringe Material ... 38
Dual Arch Trays .. 39
Surface Contamination .. 40
Inadequate Impression Material Mixing .. 41
Cast Discrepancies ... 41
Conclusion .. 42
Acknowledgments: .. 42
References : .. 43
Pictorial Root Resorption Management ..44
Editorial Board of Dental Follicle – The E Journal of Dentistry

Editor-in-Chief: Dr. Syed Nabeel

Associate Editors:
Dr. Charan Babu H.S
Dr. Hajeera Nabeel

International Editorial Advisory Board:
Dr. Paul Feuerstein, USA
Dr. Gregori Kurtzman, USA
Dr. Marco Iorio, Italy
Dr. Mohammad Hammo, Jordan
Dr. Tarun Maheshwari, Singapore
Dr. Pavan Kumar, India
Dr. Khaled Kasem; University of Barcelona, SPAIN
Scientific Editorial - 3D Printing In Orthodontics

Dr. Syed Nabeel | Editor in chief, Dental Follicle – The E Journal of Dentistry | Managing Director – Smile Maker Dental Clinic (Smile Maker Clinics Pvt Ltd) | Mysore | India

Abstract:

With the advent of 3D printing into our offices, the way we practice is completely bound to change. In this paper I Present my idea about how the future of Orthodontics may be. The idea proposed is based on the technologies that are already developed which may or may not have been used in the field of dentistry.

Key Words: 3d Printing in Orthodontics, Customized individualized Braces, Aligners.

Dentistry has been taken advantage of the various small and big industrial revolutions. We today have the Computer Guided Surgeries, robotically driven endomotors with precision in apex location in motion as it navigates through the small canal.

The first major thought process into dentistry was introduced by Professor Francois Duret, by his presentation of CAD CAM into dentistry. The next major milestone in the field of Orthodontics happened in 1994 with the introduction of Customized Bracket system Ormco Insignia™. Once the impression arrives at the Ormco office, the brackets and wires are manufactured and sent back to the dentist. The next revolution came with the invention of Aligners by Zia Chishti. Although we had bleaching trays made earlier of similar type, Aligners simply changed Orthodontics to next level. Today Aligners use a Digital Impression (3Shape, Condor) to record the case in any part of the world. The aligners and treatment planning happens in America, & the Aligners are made in America and sent back to the country from where the digital impression arrived.

Be it Ormco Insignia™ or Invisalign™, both loose on one aspect. The time consumed from the time of impression making to the appliance delivery. For someone in India easily a 2-3 weeks ordeal and suppose if any corrections are needed the same time duration is needed.

3D printing is a relatively new in the field of CNC. A CAD design model is rapidly produced using Rapid Prototyping. The object can be tested for form, fit and function prior to its manufacturing in its real material. As a prototype this object is fully workable and functions to test the visual appearance and functional aspect. The production is simple, take a 3D model and go it thru some software and type PRINT and the job is done. The basic...
principle is deconstructing the geometry of the object and rebuilding it layer by layer. The printing is done by adding layer by layer – which is additive in nature. Any different materials can be used for 3D printing, such as ABS plastic, PLA, polyamide (nylon), glass filled polyamide, stereolithography materials (epoxy resins), silver, titanium, steel, wax, photopolymers and polycarbonate. Recently, PMMA and Zirconia has also been tried successfully.

The basic line of materials used in orthodontics remain stainless steel, Nickel Titanium and PMMA out of the materials that are presently used in 3D printing. Once the patient is examined. A digital impression is made. The teeth are digitally moved to the new position. An algorithm is used to move the teeth to new position and so it would design the appliance customized to deliver the same treatment plan. Example: Tooth number 12 may require uprighting and a vertical slot in it would be of help with an uprighting spring auxiliary. Likewise, instead of using the standard tip, torque and in-out of a prescription, we could have every bracket designed to cater to the individual based on his preexisting malocclusion. Some Orthodontists believe the quality of bracket is important, some say the positioning is important and some say both are important.

When you have a chairside 3D printer, printing the customized brackets in material of choice, based on actual CAD CAM / Digital Impression readings and reconstruction makes the treatment planning more precise. Angle in an unpublished paper cited this point about the variability in tip, torque, in and out, in every individual.

This Customised Bracket System may be bonded using indirect bonding supported by the digital technologies or by direct bonding. Wherever needed a combination of lingual and regular brackets may be used. Various factors - namely bracket/base width, slot size, inter-bracket distance can be evaluated first and then the set of braces may be printed.

The aligners may also fall in the same line. Although aligners are presently the most customised appliance we have known after the age old removable appliances, the only advantage we may have with 3D support is Chair Side printing of the same and thereby saving the time required to deliver the appliance.

Conclusion

To conclude, Orthodontics is about the change drastically with the advent of these technologies. Dental technologies should be the future speciality for dental graduates to bring in the changes in the technology which will ease treatment planning and delivery.

References:

Common Impression Problems: Identification and Correction

1Dr. Gregori Kurtzman | Assistant Clinical Professor | University of Maryland | Baltimore College of Dental Surgery | Department of Restorative Dentistry | Maryland

Abstract
Precise impression taking techniques are critical to indirect restorative success. By ensuring that a concise protocol is implemented for during the impression capture phase, clinicians can predictably deliver optimal results. Common complications that may arise during impression taking include inaccurate marginal detail, bubbles, tears, pits, and voids. Proceeding with impression taking when such damage is evident will reduce the accuracy of restorative fit and integrity. This article discusses potential concerns during impression capture and addresses approaches to improve the overall quality of impressions taken.

Learning Objectives: This article discusses common complications that arise during impression taking and addresses potential solutions for this critical phase of restorative treatment. Upon reading this article, the reader should:
• Understand the necessary protocol for precise impression capture
• Recognize potential pitfalls that may arise during impression taking.

Key Words: impression, margins, pits, voids, fit

Impression fabrication is the most critical and technique-sensitive step in the fabrication of fixed prosthetics. It can also be the most frustrating stage, both to the clinician and the laboratory technician. Clinicians must take care to identify and correct potential complications that will affect the prosthetics fabricated from the impressions. This article will address some common difficulties, address what factors may errors, and present methods to correct and avoid such complications.

Inadequate Marginal Detail
The primary complaint laboratory technicians have with the impressions they receive daily is inadequate marginal detail. Marginal detail is the most critical aspect of the impression. Failure to capture the true details of the margin of the preparation will result in open margins and inadequate prosthetic fit. Voids at the margins are the result of either insufficient retraction or fluid accumulation that prevented the impression material from flowing around the margin. This can be avoided by using improved retraction methods such as
syringeable hemostatics (e.g., Retrac, Centrix, Shelton, CT; Expa-syl, Kerr Sybron, Orange, CA), bipolar tissue management (Synergistics USA, King of Prussia, PA), or Comprecaps (Coltène/Whaledent, Cuyahoga Falls, OH) (Figure 1).

Figure 1. Impression demonstrates the appearance of marginal voids (arrows). 1B. Appearance of an impression with accurate marginal detail.

Internal bubbles

Internal bubbles occur as a result of either fluid accumulation (when larger and less sharp in definition) or air entrapment (when small and well defined) (Figure 2). Bubbles on the margins of the preparations can negatively affect the fit of the prosthetics. If the bubbles occur on the internal line angles of inlay and onlay preparations due to fluid accumulation, a substandard fit will be developed. If they occur due to air entrapment, the fit of the restoration will not be compromised.

Figure 2. A bubble is located on the internal detail of the impression of the preparation (blue arrow). Bubbles that occur as a result of fluid accumulation may be large enough to affect the long-term success of the luting agent, which must now fill a wider space. The prosthetic material may also be thinner than recommended. This can be more critical when using all-ceramic materials, as they require minimum thicknesses to perform as expected. Use of a wash impression is difficult in a completed inlay/onlay impression, as complete seating can be complicated, leading to either a “stepped” or distorted impression. In these cases, it is more prudent to take a new impression and be assured of accurate detail capture. While the cause of large, internal, ill-defined areas in these preparations is usually fluid accumulation, air entrapment may also be a factor in narrow, deep preparations. These errors may be avoided by thorough flushing and drying of the preparation prior to impression taking. Placing a curved intraoral
impression tip into the deepest part of the preparation floor and extruding a light body polyvinylsiloxane (PVS) material, making sure to keep the tip in the material as its expressed, will force air out of the preparation decreasing entrapment.

If an air bubble remains on the cast after the impression is poured, a corresponding void will be created in the prosthetic material. This should not interfere with seating of the restoration and will be filled with the luting agent. These spots can often prevent complete seating when removed from the cast prior to restoration fabrication. Identification of premature internal contacts can be performed with paint on occlusion indicator liquids (e.g., Accufilm IV, Parkell Inc, Farmingdale, NY; Arti-Spot Bausch, Nashua, NH). The laboratory can block out around these tiny internal bubbles prior to fabrication to decrease chairside time.

Marginal Tears

Marginal tears usually occur when a syringeable material with insufficient tear strength is used (Figure 3). Tear strength will vary from manufacturer to manufacturer and between viscosities. These deformities can result when using a syringeable PVS in a thin deep sulcus. Removal of the impression prior to complete setting of the syringeable material may also cause marginal tearing.

Prior to retaking the impression, any remnants of the original impression material must be removed from the sulcus. Additional tissue retraction may be indicated to widen the sulcus to facilitate use of a thicker syringeable material. Switching to a more viscous syringeable material may further prevent development of another tear. Syringeable hemostatic materials can be used to limit the amount of fluid evident in the treatment area, and the patient can be instructed to occlude into a cotton device for several minutes, thereby physically pushing the tissue away from the tooth and forcing the hemostatic deeper into the tissues.4,5

Drags and Pulls

A common complication encountered when using more viscous impression materials (i.e., putty or heavy body materials) is drags and pulls. A drag results when long, rounded depressions that resemble the cuspal edges of the teeth are left in the impression material upon insertion of the tray (Figure 4). Whereas, a pull (also
referred to as a fold) results when the material creates a fold in the material, usually at the gingival aspect (Figure 4). These deformities can both result from:

- Teeth rebounding off the tray and sliding into position.
- Impression material beyond its working time (no longer in its most fluid state)
- Failure of the impression material to adapt to the teeth.
- Exceeding working time of the material prior to intraoral insertion.
- Insertion of the tray in one motion.

Drags and pulls can be avoided by using a less viscous material either syringed around the teeth or placed over the more viscous material in the tray prior to insertion. Correction of a pull in the impression can be accomplished by removal of the interproximal impression material so the impression can be reinserted without interference. A syringable impression material (light or extra-light) should be placed over the entire impression, and the depressions should be filled where the teeth are. The impression can then be reinserting intraorally. Drags, on the other hand often are not correctable by adding additional material, as they may have caused distortion of the tray. Avoiding contact between the tray and the teeth will help avoid these deformations.

Tray Selection

Tray selection is important to capture the needed area without distortion and provide the needed details. The tray, either a dual arch tray (also known as a bite impression tray) or stock single arch tray, should be large enough encompass all the teeth without contacting the soft tissue (Figure 5). The

![Figure 4. Drags appear as rounded depressions in the impression material.](image)

![Figure 5. Use of too small of an impression tray leads to contact with the tray borders and the teeth (arrows).](image)
Figure 6. Contact of the tray with the soft tissue may cause potential tray distortion. When using stock full arch trays it is important to select a tray that is long enough to capture the entire arch from the hamular notches or retromolar pads to the most anterior aspect of the buccal vestibule. In addition, the width of the selected tray is also important. A tray that is too narrow may prevent adequate seating of the tray leading to missing of needed arch detail (Figure 7). Stock trays are provided in basic sizes that may not fit all patients seen in the practice. Metal trays may be bent to widen them in the posterior, but modifications to the anterior of the tray can be difficult. Plastic stock trays are easier to modify. An alcohol torch may be used to heat the plastic tray and the flanges readapted to fit the specific patient. Different companies provide different arch shapes, and it may be advisable to stock several different brands of each size tray.

Figure 7. The impression tray has not been inserted far enough posterior to capture the details of the most distal teeth. Note: Excess material was evident in the anterior region due to poor tray placement. When using quadrant or dual arch trays, it is important to capture at least one full tooth (or the equivalent space) both mesial and distal to the tooth to be restored. Failure to provide this in the impression may make it difficult for the laboratory to properly mount the casts and achieve an accurate occlusion (Figure 8).

Figure 8. Appearance of an impression following inadequate capture of the teeth surrounding the tooth to be restored.

Separation From the Tray
Separation of the impression material from the tray may not be obvious until the restoration is returned and tried in (Figure 9). This deformity may be overlooked when...
using trays with slots and holes to lock the impression material. Tray adhesive should be used with all impressions to help eliminate impression separation from the tray. Roughen, create holes for mechanical retention, and clean inner surface of tray with alcohol before applying adhesive. Each impression material’s chemistry is different so it is advised that the clinician use the tray adhesive from the same manufacturer as their impression material. Allow the adhesive to dry prior to applying the impression material. The adhesive can be applied at the beginning of the appointment and will then be dry and ready when it is time to take the impression.

Figure 9. Appearance of an inaccurate impression due to separation of the impression material from the tray (arrow).

Figure 10. Distortion of the dual arch can occur from contact with the tray during set of the material or inadequate stiffness of the set material.

Tray Distortion

Trays can distort when they come in contact with the teeth or tissue. Distortion of the tray is more common with dual arch trays due to their more flexible nature as the patient occludes. This distortion can cause either a widened cast tooth when the impression material is stiff enough to resist spring back or an elongated cast tooth if impression spring back does occur (Figures 10). Proper selection of a tray that does not contact the teeth and is rigid enough to resist distortion is critical. When using triple trays, it is advisable to use a rigid setting PVS material (e.g., a bite registration material) as the bulk of the impression to provide a stable impression. Two-phase impressions can be used to create a custom format using the triple tray. The preliminary impression creates a rigid base that will provide hydraulic pressure to force the syringeable material in and around the preparations. Trimming the interproximal material from the preliminary impression can aid in seating the wash impression.

Inadequate Syringe Material

A “stepped” impression may result when using a two-phase impression technique and insufficient syringeable material has
been placed (Figure 11). The result will be restorations that require excessive occlusal adjustments. This can be avoided by filling the entire set tray material where the teeth depressions are with syringeable material, to provide a uniform impression.

Figure 11. Inadequate application of syringeable material taken as a two part impression leading to a “step” in the material.

Dual Arch Trays
Dual arch trays work well for fixed prosthetic applications as long as the patient has holding contacts in the section of the arch to be restored. As indicated, it's important that at least one tooth mesial and distal to the prepared tooth be captured in the impression. Dual arch trays are available as posterior quadrant, anterior arch, ¾ arch, and full arch versions.

![Figure 12](image1.png)

Figure 12. (Upper) Inadequate occlusal intercuspation during impression with a dual arch tray. Note the open bite on the left side. (Lower) Proper intercuspation during impression. Note full intercuspation on the left side.

When the tray is inserted and the patient occludes, it is important that maximum intercuspation be observed on the adjacent side (Figure 12). When using anterior dual arch trays it is often difficult to determine if the patient has occluded fully, so a separate bite should be provided to the laboratory in a very stiff PVS material designed for occlusal records. Posterior and ¾ quadrant trays have a distal loop on the tray to stabilize the tray at insertion. It is critical that the patient not occlude on this loop as this will lead to distortion of the tray and resulting spring back when the tray is removed (Figure 13).
Figure 13. (Upper) Contact of the posterior teeth was evident with the distal aspect of the plastic tray. (Lower) A lack of contact with the tray is demonstrated and maximum intercuspation was developed at the contact areas.

Upon removal of the dual arch tray impression, the clinician should be able to see contacts through the material to the trays mesh where the teeth are intercuspated (Figure 13). Holding the tray up to the light should reveal illumination at these contact points. An impression that was improperly occluded will show lack of occlusal shine through and thicker material between the arches. If there is any chance that the laboratory cannot verify the occlusion, a separate bite should be taken with an appropriate PVS material and included with the case.

Surface Contamination

A less common problem, can present as unset impression material on the surface of the set tray material. This presents as an unset tacky layer (Figure 14). Exposure to air inhibited methacrylates (e.g., composites, adhesives, core build-up materials, bis-acryl temporary crown and bridge materials) may leave a greasy coat on the prepared tooth that inhibits the material’s ability to set correctly. When using two-step impressions, failure of the syringeable material to adhere to the tray material may occur when the preliminary impression is utilized to fabricate the temporary prosthesis. Wiping down both the tooth and preliminary impression with alcohol to remove the greasy air-inhibited layer can prevent these issues.

Figure 14. The polyvinylsiloxane material remained unset due to surface contamination.

The following may transfer sulfur to critical areas of the impression and cause inhibition of setting reaction of the marginal PVS material: retraction cords and solutions containing ferric sulfate or aluminum chloride; glove contact of the prepared teeth or surrounding tissues; rolling retraction cord in gloved fingers; or the use of a rubber dam. Rinsing the area with mouthwash or water after rubber dam
removal and thoroughly drying can avoid this problem. Latex contamination of the putty can occur when mixing by hand. This may be avoided by washing the gloved hands to remove any residual powder and surface sulfides. Powder-free or vinyl gloves are an alternative to prevent putty contamination.

When a small area of unset material is noted in the final impression, but the remainder of the material has set properly. This may be the result of a failure to bleed the cartridge prior to expressing material from the auto mix tip. All new cartridges should be “bled” prior to use. It is a wise practice to express a small amount of base and catalyst prior to placement of an automix tip each time to ensure that both materials are flowing from the cartridge and have not set at the end of the cartridge.

Disinfection of the completed impression can be performed either prior to sending the impression to the laboratory or at the laboratory. Immersion of the impression in common disinfecting solutions (i.e. phenols and gluteraldehydes) used for periods of time up to 60 minutes has not shown clinically significant distortion of the impression material. Although, overnight immersion is not recommended as this may result in a decrease in accuracy of the final cast.

Inadequate Impression Material Mixing

Once the impression material is combined, it should contain a uniform color with no streaking. Streaking is more common with hand mixed putty materials than with cartridge materials (Figure 15). This may also occur if the automix cartridge is not bled prior to attaching the mixing syringe. When hand mixing putty, the material should be kneaded quickly to keep within the working time and yield a uniform color when completed.

Cast Discrepancies

Large bubbles on the cast will correspond to a defect in the impression material (Figure 16). These bubbles are invariably caused by an insufficient amount of impression material or air trapped between the impression material and the arch at tray insertion. These defects can be avoided by
syringing material around the teeth and into the vestibule prior to tray insertion. In patients with deep palates, it is also advisable to place some impression material into the depth of the palatal vault. Should the impression be removed and a void is noted due to air entrapment, a wash impression can be used to fill the void. It is advisable that the interproximal material be removed from the impression to allow full seating and the entire tray be covered in the syringeable material to ensure a continuous impression with no “step” appearance.

Figure 16. Appearance of a cast created using an impression that contained a void. Note the lack of definite detail.

Figure 17. The cast is covered with multiple bubbles resulting from hydrogen gas release from the PVS material due to pouring of cast too early. A cast that is covered with multiple tiny voids while the impression does not have corresponding defects can be the result of hydrogen gas release from the impression (Figure 17). Hydrogen is a by-product of PVS polymerization. Should the cast present with this defect, if the impression is still intact it can be re-poured. This defect can be avoided by following the manufacturer’s recommendation with regard to the duration that should be observed prior to pouring the cast.

Conclusion
Complications during the impression process can be perplexing to both the dentist and laboratory technician. Some of the more common concerns include tearing, voids, bubbles, and tray contact. This article addressed solutions for correction of some of the most prevalent impression defects that are experienced in clinical practice. By taking the necessary precautions to avoid damaged impressions, clinicians can ensure improved accuracy in communication of critical parameters as well as an overall improvement in restorative fit.

Acknowledgments:
The authors mention their gratitude to Gary Hult, 3M ESPE, St. Paul, MN, Christopher Gross Dentsply Caulk, Milford, DE, Maribelle Velasco Kerr/Sybron Orange, CA, Dr. Mark Patel and Linda Bellisario, Heraeus Kulzer, Armonk, NY, and Mark Mumme, RDT, Falcon Dental Laboratories for providing the images that accompanied this article. The authors declare no financial interest in any of the products cited herein.
References:
Pictorial Root Resorption Management

1. Dr Mohammad Hammo | BDS | DESE | Amman-Jordan | +96 2795 944494

Let’s raise the bar...Diagnosis: Root resorption (confirmed the position with CBCT)...Glide path manually then prepared with rotary files ...Obturation the canals to resorbed site with Gutta Percha (confirmed with microscope)...sealed the resorbed sites with MTA (confirmed with microscope and CBCT)....follow up will be done after 3, 6, and 12 months...let’s hope it will survive for long time...

Raise the bar...think out of the box...